Effects of Diesel Particle Filters on Performance of In-Use Buses

Leonid Tartakovskiy, Rafael Fleischman, Ran Amiel
Technion – Israel Institute of Technology

Jan Czerwinski
Labs for IC-Engines & Exhaust Emission Control, University of Applied Sciences, Switzerland

Andreas Mayer
TTM – Technik Thermische Maschinen, Switzerland
Motivation

• Particle emissions: dangerous to human health
• Nanoparticles: even more dangerous
 • Penetrate the cell membranes and enter into the blood stream
 • Reach brain and other organs
• Road transport: main source of air pollution in Israel’s population centers
• Public transportation: based almost entirely on diesel engines
DPF retrofitting

• Diesel engine buses may be kept in service for 15 years or more
• Emission control technologies become obsolete
 • Old buses turn into big polluters
• Retrofitting with Diesel Particulate Filter (DPF):
 • Cost-effective measure to reduce particulate matter emissions

![Israeli Bus Fleet Composition](image)
Research Goals

• Evaluate the reduction in nanoparticle emissions of in-use diesel buses retrofitted with DPF

• Assess the impact of retrofitting on the buses performance in real-world usage conditions
DPF selected

- Temperature profile
- CRT (Continuously Regenerating Trap)
 - Collected soot is continuously oxidized by NO₂ (generated in an oxidation catalyst upstream of the filter)
- VERT-certified
- 3 different manufacturers
Buses tested

• 18 in-use Euro III buses
 • 9 urban Man NL313F buses
 • 9 intercity Mercedes-Benz OC500 coaches
• 3 different topographies
 • Flat terrain – Tel Aviv area
 • Hilly terrain – Jerusalem area
 • Combined terrain – Haifa area
• Control group of 18 identical vehicles in identical routes
Evaluated parameters

- PN concentrations and size distribution
 - Calculation of PM
 \[m_i = \rho \frac{\pi d_i^3}{6} n_i \]
- Upstream and Downstream DPF
- Calculation of DPF filtration efficiencies (number and mass based)
 \[PNFE = \frac{(TPN_B - TPN_A)}{TPN_B} \cdot 100 \]
 \[PMFE = \frac{(TPM_B - TPM_A)}{TPM_B} \cdot 100 \]
- Effect on fuel consumption
- Effect on backpressure
Particulate Number measurement procedure

• 3 measuring rounds:
 • shortly after DPF installation
 • 4 months later
 • 10 months later

• 4 Operating Modes:
 • Low idle
 • High idle
 • Full Load, 85% rated speed
 • Free acceleration
Particulate Number Measurement: Experimental Setup

- **Particle Sizer:**
 - *EEPS 3090 TSI Inc.*

- **Sample dilution and conditioning:**
 - *379020A-30 TSI Inc.*

- **ECE-PMP-Protocol**
 - Sampling temperature: 300°C
 - Particles above 23 nm were considered
Fuel Consumption

Urban vs. Intercity
- Pilot: 18 buses
- Intercity coaches: better fuel efficiency

Seasonal variation
- Pilot & Control: 36 buses
- Hot summer: Air conditioning

Average: 2.35 km/l
Average: 1.70 km/l

Fuel Consumption [km/l]

<table>
<thead>
<tr>
<th>Intercity</th>
<th>Urban</th>
<th>DPF Installation</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.43</td>
<td>2.34</td>
<td></td>
</tr>
<tr>
<td>4.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Difference [%]

<table>
<thead>
<tr>
<th>Winter</th>
<th>Summer</th>
<th>Difference [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.43</td>
<td>2.34</td>
<td>1.76</td>
</tr>
<tr>
<td>4.0</td>
<td></td>
<td>1.62</td>
</tr>
<tr>
<td>8.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

June 21, 2016
DPF effect on fuel consumption

- Evaluation of average natural deterioration of fuel efficiency due to vehicle aging
 - Equal periods, both without DPF retrofit (Pilot & Control: 36 buses)
 - Intercity: **1.82%** (per year)
 - Urban: **1.54%** (per year)

- Evaluation of DPF effect on fuel consumption
 - Equal periods, without and with DPF retrofit (Pilot: 18 buses)

Average increase of fuel consumption due to DPF:
- Intercity: **2.5%**
- Urban: **2.1%**
Backpressure

- Pressure sensors were installed upstream the DPF
- Pressure sensors frequency: 10 Hz
- Limit pressure increase: 150 mbar
Nanoparticle size distribution (IntercityI3)

- **Low Idle**
- **High Idle**
- **85% Load**
- **Acceleration (peaks)**

Graphs showing the lognormal particle number distribution ($dN/d\log Dp$) in [#/cm3] for different conditions: Low Idle, High Idle, 85% Load, and Acceleration (peaks).
Nanoparticle size distribution (Urban U3)

Low Idle

High Idle

85% Load

Acceleration (peaks)
Filtration Efficiency

Particle count filtration efficiency > 97%
PCFE for intercity and urban buses

- Higher PCFE for Intercity buses

Average PCFE:
- Intercity: 98%
- Urban: 96%
Conclusions

• Average particle count filtration efficiency of the tested DPFs: 98% and 96% for intercity and urban buses, respectively

• Low idle regime: slightly lower filtration efficiencies

• Increase in fuel consumption due to air conditioning: 4% and 8.1% for intercity and urban buses, respectively

• Increase of fuel consumption due to DPF retrofitting: 2.5% and 2.1% for intercity and urban buses, respectively

• Backpressure increase values: below 80 mbar after 11 months of buses operation

• No deterioration in vehicle drivability was reported

• No unusual repairs or changes in maintenance operations
Acknowledgements

• The authors are grateful to the Egged Transportation Company for the financial support that made this work possible and readiness to contribute to the efforts toward air quality improvement.

• Special thanks to the Israeli Ministry of Environmental Protection and VERT Association for the fruitful cooperation and assistance in the experiments carrying-out.
Thank you!

Further info:

Leonid Tartakovsky tartak@technion.ac.il